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Agenda
Download the thought leadership paper here

https://fdpinstitute.org/resources/Documents/webinars%20thoughtleadership%20pieces%20etc/Managing%20the%20Data%20Supply%20Chain%20.pdf
https://fdpinstitute.org/resources/Documents/webinars%20thoughtleadership%20pieces%20etc/Managing%20the%20Data%20Supply%20Chain%20.pdf
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Data Supply Chain: COVID-19 Examples

Social Distancing Compliance Health

By Region View (as of late April 4th)

US Demand: 
Travel vs. 
Grocery 
(Late Jan – Early Mar)

Source:  Exabel

Source:  NYTimes & CubeIq

Source:  Financial Times

Source:  Barron’s
Source:  (Mar 30, 2020) Lancet,  Verity et al. 

Chinese fatality data (by age)
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AI / ML:
Useful for Analysis as well as for
Data scrubbing / repair.

Company
Industry

Alternative
Ganesh has designed and developed 
many innovative  alpha-generation 
frameworks based on disparate data (both 
traditional and alternative) and AI/ML 
techniques. Clients include leading asset 
management firms (incl. hedge funds) and 
plan sponsors.

Ganesh Mani, PhD, MBA
Adjunct Faculty

Deck Template: Thanks to YouExec

EconomyNatasha
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Reduce Complexity
AI / ML provides a rich toolbox

Insights
Actionable for PMs and traders

Rules or other summaries
Interpretability trade-offs

Intermediate Representations
Features (e.g., Temporal patterns, Cross-asset 
relationships,  Snippets w/ affect)

Data
Large amounts often w/ noise
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AI

Models
Choice should be dictated by data 
characteristics and goals

Beware of overfitting
Careful use of cross-validation and out-of-
sample data

Opinion vs. Fact
AI / ML provides strong opinions or hints

Augmented Intelligence
Man with bicycle analogy 

Data
Volume, Velocity & Variety
Provenance, Vintage & Noise-level
Traditional vs. Alternative

Machine
Learning

Deep
Learning

Diving for insights
Making information actionable
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Y
Monitor errors and type!

Is new data similar to training data? 

Drift?

r
How often?
Many factors (e.g., lookback) go into 
this decision

Retrain

v
Carefully
Time-series data may pose 
additional challenges

Validate

Test and Deploy
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T Temporal aspects
May need special processing

E Explainable
Simpler may be better!

S Spurious correlations
More common than you’d think!

B Behaves as expected 
If not overfit / regime change!

Whether you use a simpler technique or a 

more complex one, try to expose insights.

Multiple models 
/ solutions 
possible

Try to be creative!
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Q & A 

www.fdpinstitute.org/webinars

Kind reminders of upcoming webinars as we go through the Q & A.

https://caia.zoom.us/webinar/register/WN_eStepFzjRbuY6XvDCDn2Fg
https://caia.zoom.us/webinar/register/WN_aqJSm5nLQz6GFBxv2VRijA
http://www.fdpinstitute.org/webinars
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In Closing 

New curriculum available at the end of April 

Registration for the October 26 – November 8th exam opens May 10th

For a recent candidate webinar go to www.fdpinstitute.org/webinars

Learn more about the FDP Institute at 
www.fdpinstitute.org

http://www.fdpinstitute.org/webinars
http://www.fdpinstitute.org/
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