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[LT ML predictions for EQ]
An empirical exercice
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A bit of Epistemology
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A New Way for Research
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Asset pricing vs Empirical Asset Pricing

Econometrics vs machine learning

Share a common goal: build a predictive model

Radical difference remains in the “learning” part
Econometrics is a beta question while ML is an alpha answer
From a practitioner standpoint ML more suited to high
dimensional non-linear signals’ space

* Poses the problem of maximizing “factor zoo”
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[LT ML predictions for EQ]
definitions and concepts
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eXtreme Gradient Boosting : quick introduction

General objective of tree ensemble for K trees
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http://xgboost.readthedocs.io/en/latest/model.html

Wisdom of the crowd in ML

1.0
Simple example: = e e :
Assuming independent classifiers : oz peeenor [ ,
Classifier has an error rate € < 0.5 Rl IR Sy s o A
Ensemble prediction better than 7| NS BT = N S
random guess 2 _
If £ > 0.5 for each classifier, ensemble 5 4
wrong prediction will increase 09kt e - - - 1_.:,

Base error

Source: Raschka, Sebastian. Python Machine Learning (p. 202). Packt Publishing.
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Boosted Tree example

Recurring_Earning_Total_Assets >= 0.025

terminal

(leaf)

values

Source: “Machine Learning for Factor Investing” Coqueret., Guida (2020 Chapman &
Hall)
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Measuring the Quality of a ML model

OUTPERFORMED UNDERPERFORMED * Left axis (vertical) of the matrix
E True Positive: False negative: shows Actual
E_) * Top axis (horizontal) shows
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Beyond confusion matrix

o Fp : false positive. Stock predicted to Precision: Tp / (Tp + Fp)
outperform and that did not outperform Precision could be defined as a rate of successful prediction for
out of sample. sector neutral outperforming stocks.

o« Fn : false negative. Stock predicted to
underperform that outperform out of Recall: Tp / (Tp + Fn)

sample. Recall could be defined as a true rate, since we include the
e Tp: true positive. Stock predicted to instances that have been wrongly classified in negative.
outperform which outperform out of
sample. Accuracy: (Tp + Tn) / (Tp+Tn+Fp+Fn)
e Tn: true negative. Stock predicted to This is the accuracy level used in the cross validation part.
underperform which underperform out of
sample. F1 score: 2 * (Precision * Recall / Precision + Recall)
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[LT ML predictions for EQ]
dataset & E.D.A
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Objective, data and protocol

We will compare different labels corresponding to different
prediction horizon for cross sectional returns

e (1M, 3M, 6M, 9M, 12M, 18M, 36M)
Investment universe is US stocks (~1500)
Full dataset from Dec-1999 until Dec-2019
(~ 100) features, monthly normalised in percentrank.
Dataset pre-processed, outliers removed, focussing on training
on the tails of the distribution (top and bottom 25%) excluding
the top 1% avoiding to train on high vol.
Split the dataset between Training (80%) and Testing (20%)
Rolling window of 60 months
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Features engineering: Training on tails
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@ Springer Link

Original Research \ Published: 20 February 2020
Training trees on tails with applications to portfolio
choice

Guillaume Cogueret ™ & Tony Guida

Annals of Operations Research (2020) | Cite this article

23 Accesses | Metrics

Abstract

In this article, we investigate the impact of truncating training data when fitting regression
trees. We argue that training times can be curtailed by reducing the training sample without
any loss in out-of-sample accuracy as long as the prediction model has been trained on the
tails of the dependent variable, that is, when ‘average’ observations have been discarded from
the training sample. Filtering instances has an impact on the features that are selected to yield
the splits and can help reduce overfitting by favoring predictors with monotonous impacts on
the dependent variable. We test this technique in an out-of-sample exercise of portfolio
selection which shows its benefits. The implications of our results are decisive for time-

consuming tasks such as hyperparameter tuning and validation.
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Features correlation example
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Source: Guida, Coqueret. Chapter 7, Ensemble Learning Applied to Quant Equity — Big Data and Machine Learning in Quantitative Investment
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Creating the dataset

[ Results |__;g Messages
dateRetumPedf  SeclD Fact2 Fact? Factd Fact? Fact® Fact 11 Factl2 Fact13 Factld Factl€ Factl? Fact18 Fact2l Fact21 Fact?22 Fact23 Fact?5  Fact26  Fact2?
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Rolling Windows for training ( case for 12M forward)

In this example we use a rolling window of 60 months to predict the 12M forward performance of a

stock.
| | | | [ |
- v |m
n m| Holdout to u
i L. 300 Test m| avoid look -
- .
Training set (80%) set(20%) |a ahead bias .
| | -
Dec 99 Dec 04 1%t Prediction using trained model, Dec 05
[ u L
. TRAINING (60 Months) ) 1V A ™
n m| Holdout to -
id look
. Training set (80%) Test . g/‘r/:;d Z!Zs -
. set(20%) |m =
| |
|
Jan 00 Jan 05 2" Prediction using trained model, Jan 06
Feb 00 [coeeerrerrennnnenes ] [......]
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[LT ML predictions for EQ]
Building & Training models
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Hyperparameters:

. The learning rate, 7n: it is the step size shrinkage used in update to prevents overfitting.
After each boosting step, we can directly get the weights of new features and n actually
shrinks the feature weights to make the boosting process more conservative.

. The maximum depth: it is the longest path (in terms of node) from the root to a leaf of the
tree. Increasing this value will make the model more complex and more likely to be
overfitting.

. Regression A: it is the L? regularization term on weights (mentioned in the technical
section) and increasing this value will make model more conservative.

. gamma: minimum loss reduction required to make a further partition on a leaf node of the
tree. The larger, the more conservative the algorithm will be.

model

max_depth

eta

round

eval_metric

subsample

col_by_sample

XGB

5

1%

150

error

0.8

0.8
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LT vs the rest: impact on training

We compare the accuracy in training and test for each rebalancing. Training parameters are kept the
same across models/horizon
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Training model: quality measures

Model [train] [test]
RIM 43.7% 47.6%
R3M 40.7% 48.0%
R6M 38.9% 47.7%
RIM 37.6% 46.5%

R12M 36.1% 46.4%

R18M 32.8% 46.2%

R24M 30.6% 42.8%
R36M 27.4% 40.3%
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Interpretability breakdown — 1M preds.
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Interpretability: simple avg feature importance
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[LT ML predictions for EQ]
Analysing portfolios results
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Decile performance’s analysis: monotonicity

Avg annual net R1M R3M R6M R9M R12M R18M R24M R36M

performance: net

of TC gross of mc
D1 9.06% 11.98% | 11.38% | 11.77% | 10.09% | 10.60% | 10.07% | 9.61%
D2 8.64% 11.59% | 11.67% | 12.03% | 12.53% | 11.94% | 12.33% | 11.25%
D3 9.08% | 10.28% | 9.76% | 12.39% | 12.52% | 12.38% | 14.01% | 12.57%
D4 9.89% | 11.39% | 10.37% | 11.69% | 13.40% | 10.42% | 14.73% | 13.44%
D5 12.44% | 12.61% | 12.54% | 12.39% | 12.12% | 13.71% | 14.27% | 13.49%
D6 11.73% | 13.61% | 13.68% | 13.10% | 11.90% | 14.97% | 16.25% | 15.03%
D7 11.74% | 13.58% | 12.17% | 13.93% | 13.28% | 15.00% | 17.02% | 15.19%
D8 11.61% | 13.39% | 13.10% | 11.96% | 15.41% | 16.86% | 19.33% | 18.17%
D9 11.93% | 15.30% | 16.17% | 16.39% | 17.27% | 17.89% | 22.42% | 21.39%
D10 13.20% | 20.00% | 20.28% | 21.69% | 23.47% | 25.60% | 27.20% | 26.49%

CBP rQm

ACTIVE INVESTMENTS

IMSTITUTE"




Decile turnover’s analysis: look for the tails...

avg monthly R1M R3M R6M ROM R12M | R18M | R24M | R36M
turnover ( buy +
sell)
D1 63.7% | 48.2% | 43.7% | 41.2% | 39.6% | 37.2% | 355% | 32.4% |
D2 80.9% | 71.4% | 67.2% | 64.6% | 63.6% | 59.7% | 589% | 55.1%
D3 84.8% | 77.7% | 74.0% | 70.8% | 70.2% | 67.8% | 67.8% | 64.7%
D4 86.9% | 80.7% | 77.1% | 73.9% | 73.6% | 72.1% | 70.8% | 68.4%
D5 86.9% | 81.0% | 785% | 755% | 751% | 73.9% | 72.0% | 69.7%
D6 86.9% | 81.6% | 785% | 754% | 74.7% | 733% | 72.9% | 69.3%
D7 86.0% | 80.7% | 77.0% | 73.5% | 72.7% | 72.7% | 71.8% | 67.7%
D8 83.5% | 785% | 73.4% | 70.0% | 689% | 69.0% | 67.9% | 64.8%
D9 80.3% | 72.9% | 67.6% | 643% | 632% | 616% | 60.3% | 57.9%
D10 62.3% | 53.1% | 47.8% | 455% | 44.8% | 42.1% | 41.0% | 39.2%

CBP rQm
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Comparison accross portfolios

from Feb 08 until |Avg perf p.a. Net Vol p.a. risk/perf| Turnover avg | avg annual
Dec 19 of tc (USD) ratio | monthly (B+S) | trading cost
D10 port RIM 13.2% 12.34% 1.07 62% 1.87%
D10 port R3M 20.0% 16.51% 1.21 53% 1.59%
D10 port R6M 20.3% 17.72% 1.14 48% 1.43%
D10 port ROM 21.7% 18.68% 1.16 46% 1.37%
D10 port RI2M 24.5% 18.58% 1.32 45% 1.34%
D10 port RISM 25.6% 19.17% 1.34 42% 1.26%
D10 port R24M 27.1% 20.44% 1.33 41% 1.23%
D10 port R36 M 26.5% 20.70% 1.28 39% 1.18%
Universe EW 13.4% 12.03% 1.11 NA NA
SP500 9.8% 14.90% 0.66 NA NA

CBP rQm
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Conclusion

[1] Machine learning is not new but a “new” way for doing research today.

[2] ML used with traditional data proved to add a non-linear adaptative
component to alpha prediction

[3] Long term predictions seems to give higher risk-adjusted performance with
less turnover than the usual 1M forward horizon.
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Important Information

This material is addressed to professional clients for informative purposes only. It is neither an offer nor an invitation to buy or sell investment products and may
not be interpreted as investment advice. It is not intended to be distributed, published or used in a jurisdiction where such distribution, publication or use is
forbidden, and is not intended for any person or entity to whom or to which it would be illegal to address such a material. In particular, investment products
are not offered for sale in the United States or its territories and possessions, nor to any US person (citizens or residents of the United States of America). The
opinions herein do not consider individual clients' circumstances, objectives, or needs. Before entering into any transaction, clients are advised to form their
own opinion and consult professional advisors to obtain an independent review of the specific risks incurred (tax, financial etc.). Upon request, RAM Al Group is
available to provide more information to clients on risks associated with investments. The information and analysis contained herein are based on sources
deemed reliable. However, RAM Al Group does not guarantee their accuracy, correctness or completeness, and it does not accept any liability for any loss or
damage resulting from their use. All information and assessments are subject to change without notice. Changes in exchange rates may cause the NAV per
share in the investor's base currency to fluctuate. There is no guarantee to get back the full amount invested. Past performances, whether actual or back-
tested, are not necessarily indicative of future performance. Without prejudice of the due addressee’s own analysis, RAM understands that this communication
should be regarded as a minor non-monetary benefit according to MIFID regulations. Clients are invited to base their investment decisions on the most recent
prospectus, key investor information document (KIID) and financial reports which contain additional information relating to the investment product. These
documents are available free of charge from the SICAV’s and Management Company’s registered offices, its representative and distributor in Switzerland, RAM
Active Investments S.A. and at Macard Stein & Co AG, Paying and Information Agent in Germany; and at RAM Active Investments (Europe) SA — Succursale
Milano in Italy. This marketing material has not been approved by any financial Authority, it is confidential and addressed solely to its intended recipient; its
total or partial reproduction and distribution are prohibited. Issued in Switzerland by RAM Active Investments S.A. which is authorised and regulated in
Switzerland by the Swiss Financial Market Supervisory Authority (FINMA). Issued in the European Union and the EEA by the Management Company RAM Active
Investments (Europe) S.A., 51 av. John F. Kennedy L-1855 Luxembourg, Grand Duchy of Luxembourg. The reference to RAM Al Group includes both
entities, RAM Active Investments S.A. and RAM Active Investments (Europe) S.A.
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FDP Curriculum

Sample of the Reading(s):

Guida, T. (2019). Big Data and Machine Learning in
Quantitative Investments. West Sussex, UK: John Wiley &
Sons Ltd.

» Topic 1 — Reading 1.4: Chapters 2,4 & 5.

» Topic 8 - Reading 8.9 : Chapter 10.

1. Introduction to Data Science & Big Data

Sample Keywords (of the Guida reading):

Mainstream (p. 336) Naive Bayes (p. 355)
Part of Speech Tagging (p. 349) Natural language
Primary source (p. 336) processing (p.347)
Stemming (p. 350) FNN (p. 363)
: , — Social media (p. 337) Tokenization (p. 348)
8. Big Data and Machine Learning in the .
Sianetal st Lemmatization (p. 350) RNN (p. 363)

Sentiment analysis (p. 339) Word filter (p. 348)

CNN (p. 363 g
INSTITUTE"

Source: FDP Institute Study guide March 2020 Exam



FDP Curriculum

1. Introduction to Data Science & Big Data

8. Big Data and Machine Learning in the

Financial Industry

Source: FDP Institute Study guide March 2020 Exam

Sample Learning Objectives (provided for reading 8.9.1)

Demonstrate proficiency in the following areas:

8.9.1 Natural language processing of financial news. For example:

A.Describe the three categories of sources of news data.

B.Explain the advantages and disadvantages of using the new category of social
media.

C.Describe sentiment analysis.

D.Describe the word list approach to sentiment analysis.

E. Describe the three challenges associated with sentiment analysis.

F. Describe the four steps — pre-processing, feature representation, inference
and evaluation — in applying NLP to texts.

G.Understand aspects of pre-processing: tokenization, vocabulary, part of
speech, stemming and lemmatization.

H.Understand aspects of representation of words as features: bag of words, N-
gram, distributed representation

Sample Question:

According to “Natural Language Processing of Financial News,” by Sesen
et al., what is the description of a “word list” approach to sentiment
analysis?

a) Words appearing in an article are manually labeled as positive or negative
b) A data set that associates words with different sentiments is created

c) The predictive power of a news item is used to assign

sentiment labels to words - D Ir_)
[

Answer: b
Source: LO 8.9.1, Reading 8.9, pp 340-341 INSTITUTE"




Kind reminders of upcoming webinars as we go through the Q & A.

Q & A Add your questions in the chat room please.

WEBINAR SERIES
A Conversation With...

Ganesh Mani
Adj. Faculty Camegie Mellon
“Data Supply Chain Mgmt.”

March 10, 2020
1pm EST

WEBINAR SERIES
A Conversation With...
Michael Oliver Weinberg
Managing Dir. , Head of
Hedge Funds & Alt. Alpha
APG
Autonomous Learning
Investment Strategies
March 25th - 4pm EST

WEBINAR SERIES
A Conversation With...
Rick Roche, CAIA
Man. Dir. Litfle Harbor Advisors
“Evolution of Machine
Learning in Investment
Mgmt.”
March 17 - T1am EST

§r1 WEBINAR SERIES
| A Conversation With... #Q

George Mussalli, CFA &)

Mike Chen, Ph.D. PanAgora [V ¥%)
PanAgora

“An integrative Approach to
Quantitative ESG Investing”
April 1, 2020 @ 12noon
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In Closing

» Registration for the October 26 — November 8t exam opens May 10t
» For a recent candidate webinar go to

Learn more about the FDP Institute at
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http://www.fdpinstitute.org/webinars
http://www.fdpinstitute.org/
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