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Big Picture

 Financials are often delayed indicators of corporate quality

 Internal discussion (e.g., emails) may be used as an early warning system

 An automated platform that parses emails and produces summary
statistics would be highly valuable, since…

– It can analyze vast quantities of textual not amenable to human
processing

– It does not require revelation of individual email content explicitly to
monitors/regulators
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Our Purpose

 Our purpose is to explore the predictive power of information conveyed
by employee emails

 Specifically, we are interested in:

 The sentiment conveyed by email content

 The information conveyed by structural characteristics, such as email volume or length

 Other non-verbal indicators of potential trouble (e.g., shifting email network patterns)
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Preview of Results

We find that the net sentiment conveyed by Enron employee email
content is a significant predictor of stock-return performance

 Interestingly, email length was a stronger predictor of subsequent price
declines than the net sentiment conveyed by the message body itself.

We also identify other potential indicators/predictors of escalating risk or
malfeasance.
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Data
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The Enron Email Corpus
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The Enron Email Corpus

 Initial Sample:
– Approximately 500,000 emails
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The Enron Email Corpus

 Initial Sample:
– Approximately 500,000 emails
– January 2000 through December 2001

– First made publicly available by the Federal Energy Regulatory Commission (FERC)
during its investigation of Enron

– Subsequently culled and distributed by the Carnegie Mellon CALO project

 Caveats / Redactions
– The Enron corpus has been scrubbed over time for legal reasons and to honor

requests from affected employees.
– Ex(1): user “fastow-a” is notably missing
– Ex(2): Email chatter surrounding Mr. Skilling’s sudden resignation on 8/14/2001 has

been expunged.
– Overall, details regarding exclusion criteria have not been made public, and our

analyses should be viewed as exploratory and prescriptive
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Curing the Data

We focus on “sent” emails (rather than all emails) in order to…
– Analyze content specifically written by Enron employees
– Avoid processing the same content more than once
– i.e., if user “lay-k” sends an email to “skilling-j”

 Other filters applied to remove noisy (junk) mail:
– Emails greater than 3,000 characters in length
– Emails sent to more than 20 recipients
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Our Final Sample

 Overall, we obtain…
– The Enron email corpus from the Carnegie Mellon CS site
– Stock price and stock return information from CRSP
– News articles from Factiva PR Newswire
– Sentiment word dictionaries from the Harvard Inquirer and the Loughran and

McDonald sentiment word lists

 Final Sample:
– 144 distinct employees
– 113,266 sent emails
– January 2000 through December 2001
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Analyses
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Table 1. Summary Statistics of Sent Mail

The average email is 362 characters in 
length, with a median of 163 characters…
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Table 1. Summary Statistics of Sent Mail

… with an average of 1.77 recipients per 
sent mail.
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Table 1. Summary Statistics of Sent Mail

Many emails (close to 11%) are simply 
forwarded without added text.
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Figure 1. Average Email Length over Time
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Figure 1. Average Email Length over Time

Year 2000:

Year 2001:
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Figure 1. Average Email Length over Time

Year 2000:

Year 2001:

Initially, average email length is fairly stable, 
straddling roughly 400 characters per email.
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Figure 1. Average Email Length over Time

Year 2000:

Year 2001:

Marked decline in average length as we 
approach Enron’s demise (approx. 50%).
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Figure 2. Email Sentiment and Disagreement over Time

Net Sentiment:

Disagreement:

𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑁𝑁𝑁𝑁

1 −
𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑁𝑁𝑁𝑁
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1 −
𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁𝑁𝑁𝑁𝑁

Based on context-dependent sentiment 
dictionaries for word classification
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Figure 3. Factiva News Coverage over Time
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Figure 3. Factiva News Coverage over Time

Spike in number of articles as we 
approach Enron’s demise.
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Figure 4. Factiva News Sentiment over Time
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Figure 4. Factiva News Sentiment over Time

Net sentiment from body

Net sentiment from header
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Figure 5. Stock Returns and Net Sentiment over Time

Net sentiment across Enron  
employee emails over time

Moving average stock returns 
for Enron over time
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Figure 6. Stock Prices and Net Sentiment over Time

Net sentiment across Enron  
employee emails over time

Moving average stock price for 
Enron over time
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Figure 7. Stock Returns and Email Length over Time

Moving average stock returns 
for Enron over time

Moving average email length 
across Enron  employee emails 
over time
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Figure 8. Stock Prices and Email Length over Time

Moving average stock price for 
Enron over time

Moving average email length 
across Enron  employee emails 
over time
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Figure 8. Stock Prices and Email Length over Time

Moving average stock price for 
Enron over time

Moving average email length 
across Enron  employee emails 
over time

Perhaps, as risk/malfeasance escalates, emails become 
shorter, as employees are less likely to include details 
in message sent via the corporate server
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Table 2. Email Content and Stock Returns

Dependent Variable = Stock Returnst
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Table 2. Email Content and Stock Returns

Dependent Variable = Stock Returnst

One stdev (i.e., 0.019) decrease in Net Sentiment is 
associated with a 4.5% decline in stock returns…
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Table 2. Email Content and Stock Returns

Dependent Variable = Stock Returnst … but no longer significant when we control 
for email length.
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Table 2. Email Content and Stock Returns over Time

Dependent Variable = Stock Returnst

Overall, 20-character decline in moving average email 
length is associated with a 1.17% decline in stock returns.
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Table 3. Email Content versus Factiva News Content

Dependent Variable = Stock Returnst
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Table 3. Email Content versus Factiva News Content

Dependent Variable = Stock Returnst

Email content contains more information than 
news-header content….
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Table 3. Email Content versus Factiva News Content
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…. But neither is significant when accounting 
for email length.
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Table 3. Email Content versus Factiva News Content

Dependent Variable = Stock Returnst

On the other hand, email content contains less
information than content from the news body…

(could this be due to redactions on the Enron 
email corpus?)
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Table 3. Email Content versus Factiva News Content

Dependent Variable = Stock Returnst

…. But, again, neither is significant when 
accounting for email length.
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Summary and Implications

 Thus far, we have shown that the net sentiment conveyed by employee
sent mails is a significant predictor of stock-return performance

 Interestingly, email length was a stronger predictor of subsequent price
declines than the net sentiment conveyed by the message body itself.

 Overall, email content may be controlled or manipulated

– Thus, we are also (and perhaps even more!) interested in the non-
verbal, interaction- or network-based indicators of potential trouble.
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Additional Explorations

Other dimensions ripe for investigation….
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Figure 11. Email Networks

Year 2000, Q4:
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Figure 11. Email Networks

Year 2001, Q4:
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Figure 13. Vocabulary Trends
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Figure 13. Vocabulary Trends
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Figure 14. Topic Analysis over Time
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Figure 14. Topic Analysis over Time
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Topics assigned via latent Dirichlet allocation (LDA)



Concluding Remarks

We introduce an automated platform to parse corporate email content,
and we find that the net sentiment conveyed by employee sent mails is a
timely indicator of stock-return performance.

 Non-verbal indicators, such as email length and network structure, are
particularly promising avenues to explore.

 Overall, we suggest the promise of a regulatory technology (RegTech)
approach by which to systematically parse email content and network
structure to detect indicators of risk or malfeasance on an ongoing and
more timely basis.

Thank you.
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