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Big Picture

" Financials are often delayed indicators of corporate quality

" Internal discussion (e.g., emails) may be used as an early warning system

" An automated platform that parses emails and produces summary
statistics would be highly valuable, since...

—It can analyze vast quantities of textual not amenable to human
processing

— It does not require revelation of individual email content explicitly to
monitors/regulators

S. Kim / SCU 2020 Motivation



Our Purpose

= Qur purpose is to explore the predictive power of information conveyed
by employee emails

= Specifically, we are interested in:
* The sentiment conveyed by email content
= The information conveyed by structural characteristics, such as email volume or length

= Other non-verbal indicators of potential trouble (e.g., shifting email network patterns)

S. Kim / SCU 2020 Motivation



Preview of Results

» We find that the net sentiment conveyed by Enron employee email
content is a significant predictor of stock-return performance

" Interestingly, email length was a stronger predictor of subsequent price
declines than the net sentiment conveyed by the message body itself.

= We also identify other potential indicators/predictors of escalating risk or
malfeasance.

S. Kim / SCU 2020 Motivation



Data
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The Enron Email Corpus
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The Enron Email Corpus

= |nitial Sample:
— Approximately 500,000 emails
— January 2000 through December 2001

— First made publicly available by the Federal Energy Regulatory Commission (FERC)
during its investigation of Enron

— Subsequently culled and distributed by the Carnegie Mellon CALO project

=  Caveats / Redactions

— The Enron corpus has been scrubbed over time for legal reasons and to honor
requests from affected employees.

—  Ex(1): user “fastow-a” is notably missing

—  Ex(2): Email chatter surrounding Mr. Skilling’s sudden resignation on 8/14/2001 has
been expunged.

— Overall, details regarding exclusion criteria have not been made public, and our
analyses should be viewed as exploratory and prescriptive
— D
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Curing the Data

= We focus on “sent” emails (rather than all emails) in order to...
— Analyze content specifically written by Enron employees
— Avoid processing the same content more than once

— i.e., if user “lay-k” sends an email to “skilling-j”

= Other filters applied to remove noisy (junk) mail:

—  Emails greater than 3,000 characters in length

— Emails sent to more than 20 recipients

S. Kim / SCU 2020



Our Final Sample

= OQverall, we obtain...
— The Enron email corpus from the Carnegie Mellon CS site
— Stock price and stock return information from CRSP
— News articles from Factiva PR Newswire

— Sentiment word dictionaries from the Harvard Inquirer and the Loughran and
McDonald sentiment word lists

" Final Sample:
— 144 distinct employees
— 113,266 sent emails
— January 2000 through December 2001

S. Kim / SCU 2020



Analyses
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Table 1. Summary Statistics of Sent Mail

Panel A. Characteristics by Employee (N = 144)

Variable Mean  Min P25  Median P75 Max
FEimails per Person 787 2 105 349 891 8,793
Average “Connectedness” 1.62 1 1.21 1.44 1.76 4.47
Average Length per Person 279.92  19.15 160.45 22790 338.07 944.23
Panel B. Email Characteristics (N = 113,266 )
Variable Mean | Min P25  |Median P75 Max
Length of Email (# of characters) 362 0 46 163 466 2,998
Direct Recipients per Email ( “to”) 1.44 0 1 1 1 20)
Indirect  Recipients per Email 0]The average email is 362 characters in 19
(“cc”) length, with a median of 163 characters...
Total Recipients per Email L.77 | 1 1 2 20)
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Variable Mean  Min P25  Median P75 Max
FEimails per Person 787 2 105 349 891 8,793
Average “Connectedness” 1.62 1 1.21 1.44 1.76 4.47
Average Length per Person 279.92  19.15 160.45 22790 338.07 944.23
Panel B. Email Characteristics (N = 113,266 )
Variable Mean  Min P25  Median P75 Max
Length of Email (# of characters) 362 0 46 163 466 2,998
Direct Recipients per Email ( “to”) 1.44 0 1 1 1 20)
Indirect Recipients per Email 0.32 0 () () 0 19
(Fec”)
Total Recipients per Email L.77 | 1 1 2 20)

... with an average of 1.77 recipients per
sent mail.
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Table 1. Summary Statistics of Sent Mail

Panel A. Characteristics by Employee (N = 144)

Variable Mean  Min P25  Median P75 Max
FEimails per Person 787 2 105 349 891 8,793
Average “Connectedness” 1.62 1 1.21 1.44 1.76 4.47
Average Length per Person 279.92  19.15 160.45 22790 338.07 944.23
Panel B. Email Characteristics (N = 113,266 )
Variable Mean | Min P25  Median P75 Max
Length of Email (# of characters) 362 0 46 163 466 2,998
Direct Recipients per Email ( “to”) 1.44 0 1 1 1 20
Indirect Recipients per Email 0.32 Many emails (close to 11%) are simply
(“cc”) forwarded without added text.
Total Recipients per Email L.77 | 1 1 2 20)
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Figure 1. Average Email Length over Time
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Figure 1. Average Email Length over Time
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Figure 2. Email Sentiment and Disagreement over Time
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Figure 3. Factiva News Coverage over Time

Weekly Time Series Plot of Articles Published
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Figure 4. Factiva News Sentiment over Time
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Figure 5. Stock Returns and Net Sentiment over Time
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Figure 6. Stock Prices and Net Sentiment over Time
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Figure 7. Stock Returns and Email Length over Time
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Figure 8. Stock Prices and Email Length over Time
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Figure 8. Stock Prices and Email Length over Time
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Table 2. Email Content and Stock Returns

Dependent Variable = Stock Returns,

Variable | " Coefficient Estimate (t-statistic)
(1) (2) (3) (4)
MA Email Sentiment; 2.347HF* 0.575 2.330%%* -1.397

(3.27) (0.63) (3.14) (-1.25)

MA Email Length, 0.5R4*** 1.046%**
(2.97) (4.19)
MA Total Emails; -0.004 0. 131%**

(-0.10)  (-2.83)

Intercept -0.680***  -0.406* -0.671%** 0.117
(-345)  (-1.93)  (-3.08)  (0.43)

Adjusted R? 0.10 0.18 0.09 0.24
No. of observations 88 88 88 88
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Table 2. Email Content and Stock Returns

Dependent Variable = Stock Returns,

Variable | " Coefficient Estimate (t-statistic)
() (2) (3) (4)
MA Email Sentiment; 2.347HF* 0.575 2.330%%* -1.397

(3.27) (0.63) (3.14) (-1.25)

MA Email Length, One stdev (i.e., 0.019) decrease in Net Sentiment is
associated with a 4.5% decline in stock returns...

MA Total Emails; -0.004 0. 131%**
(-0.10) (-2.83)

Intercept -0.680***  -0.406* -0.671%** 0.117
(-345)  (-1.93)  (-3.08)  (0.43)

Adjusted R? 0.10 0.18 0.09 0.24
No. of observations 88 88 88 88
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Table 2. Email Content and Stock Returns

Dependent Variable = Stock Returns, —
... but no longer significant when we control

Variable ~ Coefficient | for email length.
(1) (2) (3) (4)
MA Email Sentiment; 2.34TF*% 0.575 2.330%** -1.397

(3.27) (0.63) (3.14) (-1.25)

MA Email Length, 0.5R4*** 1.046%**
(2.97) (4.19)
MA Total Emails; -0.004 0. 131%**

(-0.10)  (-2.83)

Intercept -0.680***  -0.406* -0.671%** 0.117
(-345)  (-1.93)  (-3.08)  (0.43)

Adjusted R? 0.10 0.18 0.09 0.24
No. of observations 88 88 88 88
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Table 2. Email Content and Stock Returns over Time

Dependent Variable = Stock Returns,

Variable | " Coefficient Estimate (t-statistic)
(1) (2) (3) (4)
MA Email Sentiment; 2.347HF* 0.575 2.330%%* -1.397

(3.27) (0.63) (3.14) (-1.25)

MA Email Length, 0. 5R4*** 1.046%**
(2.97) (4.19)
MA Total Emails; Overall, 20-character decline in moving average email

length is associated with a 1.17% decline in stock returns.

Intercept -0.680***  -0.406* -0.671%** 0.117
(-345)  (-1.93)  (-3.08)  (0.43)

Adjusted R? 0.10 0.18 0.09 0.24
No. of observations 88 88 88 88
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Table 3. Email Content versus Factiva News Content

Dependent Variable = Stock Returns,

Panel B. News Header Sentiment and Returns

MA Header Sentiment; -0.795 -1.136* -0.772  -1.210%*
(-1.31)  (-1.96)  (-1.34)  (-2.03)

MA Email Sentiment;, 2.628%F*F  (0.705  2.566%F*
(3.30) (0.66) (3.18)

MA Email Length; 0.560™*
(2.59)
MA Total Emails; -0.024
(-0.59)
Intercept 0.307 -0.256 -0.096 -0.178

(1.15) (-0.84)  (0.75)  (-0.54)

Adjusted R? 0.01 0.12 0.18 0.11
No. of observations S1 81 81 S1

-0.893
(-1.61)

-1.254
(-1.03)
1.026***
(3.93)

J0.138%F*
(-2.91)

0.485
(1.39)
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Table 3. Email Content versus Factiva News Content

Dependent Variable = Stock Returns,
Panel B. News Header Sentiment and Returns
MA Header Sentiment; -0.795 -1.136* -0.772  -1.210%* -0.893
(-1.31) (-1.96) (-1.34) (-2.03) (-1.61)

MA Email Sentiment; 2.628%F* 0.705 2.566%*F* -1.254
(3.30) (0.66) (3.18) (-1.03)

MA Email Length; 0.560** 1 02G***
Email content contains more information than
news-header content....
MA Total Emails; 0.024  -0.138%**

(-0.59) (-2.91)

[ntercept 0.307 0256 -0.096  -0.178 0.485
(1.15) (-0.84)  (0.75)  (-0.54) (1.39)
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No. of observations S1 81 81 S1 81

S. Kim / SCU 2020 Analyses



Table 3. Email Content versus Factiva News Content

Dependent Variable = Stock Returns,
Panel B. News Header Sentiment and Returns
MA Header Sentiment; -0.795 -1.136* -0.772  -1.210%* -0.893
(-1.31) (-1.96) (-1.34) (-2.03) (-1.61)

MA Email Sentiment; 2.628%F* 0.705 2.566%*F* -1.254
(3.30) (0.66) (3.18) (-1.03)

MA Email Lengthy 0.560™* 1.026%**
(2.59) (3.93)

MA Total Emailst AWALE! N1 ookfkk

.... But neither is significant when accounting
for email length.

[ntercept 0.307 0256 -0.096  -0.178 0.485
(1.15) (-0.84)  (0.75)  (-0.54) (1.39)

Adjusted R? 0.01 0.12 0.18 0.11 0.25
No. of observations S1 81 81 S1 81
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Table 3. Email Content versus Factiva News Content

Dependent Variable = Stock Returns,

Panel A. News Body Sentiment and Returns

MA Body Sentiment; 1.410%**  1.501** 0.657 1.505%* -0.827
(3.95) (2.49) (0.87) (2.48) (-0.92)
MA Email Sentiment; -0.245 0.377 -0.284 -1.293

(-0.19) (-0.29) (-0.22) (-1.02)

MA Email Length; 0.486* 1. 380***
(1.81) (3.34)
MA Total Emails; -0.009  -0.164%**

(-0.24)  (-2.77)

[ntercept L0.TITRFF 0.688%FF  _0.426%  -0.668FFF  (0.399
(-4.18)  (-3.27)  (-1.69)  (-2.94) (1.04)

Adjusted R? 0.15 0.14 0.17 0.13 0.23
No. of observations 81 81 81 81 81 I_‘DD
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Table 3. Email Content versus Factiva News Content

Dependent Variable = Stock Returns,

Panel A. News Body Sentiment and Returns

MA Body Sentiment; 1.410%*%* | 1.501** 0.657 1.505%* -0.827
(3.95) (2.49) (0.87) (2.48) (-0.92)

MA Email Sentiment; -0.245 0.377 -0.284 -1.293
(-0.19) (-0.29) (-0.22) (-1.02)

MA Email Lengthy On the other hand, email content contains less
information than content from the news body...

FaTay e A I T B e il

(could this be due to redactions on the Enron
email corpus?)

MA Total Emails;

[ntercept L0.TITRFF 0.688%FF  _0.426%  -0.668FFF  (0.399
(-4.18)  (-3.27)  (-1.69)  (-2.94) (1.04)

Adjusted R? 0.15 0.14 0.17 0.13 0.23
No. of observations 81 81 81 81 81 F‘DD
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Table 3. Email Content versus Factiva News Content

Dependent Variable = Stock Returns,

Panel A. News Body Sentiment and Returns

MA Body Sentiment; 1.410%**  1.501** 0.657 1.505%* -0.827
(3.95) (2.49) (0.87) (2.48) (-0.92)

MA Email Sentiment; -0.245 0.377 -0.284 -1.293
(-0.19) (-0.29) (-0.22) (-1.02)
MA Email Length; 0.486* 1.380%**
(1.81) (3.34)

MA Total Emails; ... But, again, neither is significant when

accounting for email length.

[ntercept L0.TITRFF 0.688%FF  _0.426%  -0.668FFF  (0.399
(-4.18)  (-3.27)  (-1.69)  (-2.94) (1.04)

Adjusted R? 0.15 0.14 0.17 0.13 0.23
No. of observations 81 81 81 81 81 I_‘DD

S. Kim / SCU 2020 Analyses



Summary and Implications

" Thus far, we have shown that the net sentiment conveyed by employee
sent mails is a significant predictor of stock-return performance

" Interestingly, email length was a stronger predictor of subsequent price
declines than the net sentiment conveyed by the message body itself.

= Overall, email content may be controlled or manipulated

—Thus, we are also (and perhaps even more!) interested in the non-
verbal, interaction- or network-based indicators of potential trouble.

S. Kim / SCU 2020 Analyses



Additional Explorations

Other dimensions ripe for investigation....

S. Kim / SCU 2020 Analyses



Figure 11. Email Networks
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Figure 11. Email Networks
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Figure 14. Topic Analysis over Time
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Figure 14. Topic Analysis over Time
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Concluding Remarks

=" We introduce an automated platform to parse corporate email content,
and we find that the net sentiment conveyed by employee sent mails is a
timely indicator of stock-return performance.

=" Non-verbal indicators, such as email length and network structure, are
particularly promising avenues to explore.

= Overall, we suggest the promise of a regulatory technology (RegTech)
approach by which to systematically parse email content and network
structure to detect indicators of risk or malfeasance on an ongoing and
more timely basis.

Thank you.
FER

S. Kim / SCU 2020 Concluding Remarks
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* Guida, T. (2019). Big Data and Machine Learning in Quantitative Investments.
West Sussex, UK: John Wiley & Sons Ltd. Chapter 10.

* Das, S., S. Kim and B. Kothari. (2019). Zero-Revelation RegTech: Detecting Risk
through Linguistic Analysis of Corporate Emails and News. The Journal of

Financial Data Science, 1(2), 8-34. DOI:

https://doi.org/10.3905/jfds.2019.1.2.008

Sample Keywords:
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Natural language processing (p. 5),
Machine learning (ML) (p. 4),
Supervised learning (p. 5),
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Deep learning (p. 5),
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Sample Learning Objectives:

8.10.1 Using linguistic analysis to perform risk analysis of
investments.

A. Explain the difficulties associated with manual parsing of
unstructured text.

B. Describe the concept of RegTech.

C. Describe how the content and structure of emails could be used
for risk analysis.

Sample Question:

According to the article “Zero-Revelation RegTech: Detecting Risk
through Linguistic Analysis of Corporate Emails and News,” what
does the decomposition of the ‘document term matrix’ facilitate?

Topic sentiment™
Network activity

8. Big Data and Machine Vocabulary trends

Learning in the Financial
Indust Source. LO 8.10.1. p. 28-29 ! oTruTe
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