Forking Paths in Empirical

Welcome
We will begin promptly at 10 AM ET.

If you are unable to hear the speakers, please let us know in the chat box.
You may enter your questions in the Q&A, we will address them at the
end of the presentation. You can find a copy of the slide deck and
recording of this webinar: www.fdpinstitute.org/webinars
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An ounce of epistemology

the path towards scientific dissemination

it all starts
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The literature provides a biased picture...

What we see The broader picture
: Negative
PUTsher Published results

articles

Positive
results

Positive
results

Negative
results
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"In this garden of forking paths, whatever route you take seems
predetermined, but that’s because the choices are done implicitly.
The researchers are not trying multiple tests to see which has the
best p-value; rather, they are using their scientiic common sense to
formulate their hypotheses in reasonable way, given the data they
have. The mistake is in thinking that, if the particular path

that was chosen yields statistical signiicance, that this is
strong evidence in favor of the hypothesis."

Gelman & Loken - The Statistical Crisis in Science Am. Sc. (2014)
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One solution: exhaustiveness

o Often, papers propose baseline results, followed by
(selective?) robustness checks (one variable at a time).

o Often, reviewers ask for more checks!

e Sometimes, results cannot be replicated, and they change
(qualitatively) when the empirical protocol is slightly altered.

o This leads to shaky conclusions and lack of trust.

— We propose to include multiple variations of the initial
protocol as the baseline output.
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Related literature

Recently, on sensitivity to research design:

e The Influence of Hidden Researcher Decisions in Applied Microeconomics,
Huntington-Kiein et al., Econ. Inqg. 2021

e Methodological variation in empirical corporate finance, Mitton, RFS 2022

e Non-standard errors, Menkveld et al., J- 2023

e Computational Reproducibility in Finance: Evidence from 1,000 Tests,
Perignon et al., SSRN 2023

On asset pricing factors/anomalies:

®* The devil in HML's details, Asness et al., JPM 2013
e Non-Standard Errors in Asset Pricing: Mind Your Sorts, Soebhag et al., SSRN
2022

e Non-Standard Errors in Portfolio Sorts, Walter et al., SSRN 2022
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Abstract representation: composition of mappings

e The empirical part of research process starts with some
input which we call D (initial version of the data)

e The study is modelled as a sequence of operations fj so that
the reference research output (e.g., one t-statistic) is such
that

0,0 =[0]_,5] (@) =t ofs_1 0 o1(D),

where f; I S; — Sj+1, with S1 and S;+1 encompassing the
sets of feasible input D and output values, respectively.
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lllustration with equity premium prediction
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The case of Lipschitz mappings

If we assume that for D, D € S;j, there exists some constant
c; > Osuch that

If;(D) —fi(D) Il =¢lID—Dll,

then, forO <K < J,

K+1
01, Jo «o) - [ox 1, Jo « D] < D] e
j=K+1
l.e.: there is a compounding effect of the number of mappings
(more mappings = larger range of outcomes, unless they are

contracting or non-expanding, which rarely occurs).
14/ 44



e By generating alarge number of alternative outcomes, we get a
more complete picture of the problem we investigate.

e We can report the full distribution of outcomes, and not just a few
values that corroborate our priors (and increase odds of
publication). — test for p-hacking!

e We can resort to averaging and build robust confidence intervals.

e We can determine which particular design choices have an impact
on the distribution (or mean) of outcomes.

e We can quantify the widening speed of the range of results as we

add new layers in the protocol. These hacking intervals were coined
in A theory of statistical inference for ensuring the robustness of

scientific results, Coker et al., (2021).
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Application n°1: equity premium prediction




The p-curve of predictive regressions (over 13,824 paths)

The data is from Goyal, Welch & Zafirov (2021 follow up from 2008)
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Figure 4: Distribution of p-values. In the left panel, we plot the histogram of all p-values, as well
as the p-curve (Simonsohn et al. (2014a)), which is the restriction of the distribution to the interval of
significant values (which we take to be [0,0.1]). In the right panel, we show the cdf of the p-values, sorted
by independent variable. Results for regressions with fewer than 30 observations are discarded.
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Impact of mappings (1/2)
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Figure 11: Impact of mappings: robustness checks. We report the distribution of ¢-
statistics for two binary choices in mappings, plus the final estimator type. Results for regressions
with fewer than 30 observations are discarded.
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Impact of mappings (2/2)

The equationis: ri+x = a + bxt + et+k
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Frequentist model averaging

Following Burnham and Anderson (2004)
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Figure 8: Frequentist model averaging. We display average coefficients within their 95%
confidence interval. Coefficients stem from Equation (20). Confidence intervals are defined by
b, — 1.9602/+/T,, b, + 1.9602/\/T,], where T, = 23'121 w;T;, with T; being the sample size of model
j. The left panel displays results when predictors are levels, while the right one focuses on differences of
variables. To allow comparisons, all predictors are scaled to have unit variance before estimation.
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Rate of increase of intervals (1/2)
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Figure 13: Hacking intervals with one fixed mapping. We show the intervals of ¢-statistics
obtained by fixing one mapping. Each option of the mapping is tested and all combinations of all
other mappings are spanned to generate the intervals. The nine modules (i.e., mappings) are shown

with colors. 211744
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Rate of increase of intervals (2/2)
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Application n°2: asset pricing anomalies




Since ... and the cross-section of expected returns, it has

become customary to question the validity of factors.

— Indeed, why is it so "easy" to find factors, but hard to make money

out of them? Some answers in Zeroing in on the Expected Returns of
Anomalies (Chen & Velikov JFQA Forthcoming)

As is already shown in The devil in HML's details, small tweaks in the

construction of the factors can lead to deterioration in performance.

This is risky for investors!

Intuitively, they seek a construction of factors that will exhibit a
performance that is not sensitive to implementation details. 22/ 44


https://academic.oup.com/rfs/article/29/1/5/1843824
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https://jpm.pm-research.com/content/39/4/49

Introducing exhaustive multiple testing (EMT)

Combining two types of approaches.

Multiple testing
Large scope, unique design (protocol)
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Exhaustive testing

Narrow scope (focused research question),
multiple design choices

Figure 1: Illustration of model rich and protocol poor versus model poor and protocol

rich studies.
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We follow the BRC version of An Evaluation of Alternative Multiple Testing
Methods for Finance Applications (Harvey & Liu RF 2020)

We are given T X N observations xt,n, where T is the sample size and N the

number of tests. These observations are bootstrapped B times to yield a
(b)

t,n-

B XT XN tensor x Here, bis the index of the bootstrapped sample.

Bootstrapped statistics are

where pf]b), orgb) are the sample mean and standard deviation of each bootstrap

series. Un is the sample mean of the original (non bootstrapped) data.
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https://academic.oup.com/raps/article/10/2/199/5817321

:\(

b ~(b
We write tN?, for the statistics ordered such that t , : > )

>t .7, sothat, for each

~(b
bootstrap sample b, t isthe largest statistic. We are then given a confidence
level |, say | = 95%. The target threshold for the test is then the | quantile of

~(b)
the vector t; .

What we refer to exhaustive multiple testing is replacing
bootstrapping by forking paths:

py — ¢
(P = T

and processing the corresponding thresholds. 0 | 44



EMT for asset pricing anomalies: paths

The data is obtained from Dacheng Xiu's website, from the Empirical Asset Pricing paper.
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https://academic.oup.com/rfs/article/33/5/2223/5758276

EMT for asset pricing anomalies: results
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EMT for asset pricing anomalies: statistics
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100+
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Figure 11: Distribution of bootstrapped and paths-related maximum statistics.

We produce the histogram of the maximum statistics stemming from bootstrapping (Eﬁ”), in blue)

and forking paths (E&p ) in orange and red). The sequences are derived from equations (14) and

(15), respectively. The vertical black line is the benchmark t-statistic of the best anomaly (cfp_ia
in this case) for the default path. The vertical dotted lines correspond to the 95% quantile of the
maximum statistics of each type. The difference from the two exhaustive distributions comes from
the benchmark p,, used to compute the statistics. The point-wise values are obtained when u,, is
the average anomaly return of the default path described above. The average values correspond
to the case when p,, is the average of factors’ returns over all paths. 31/ 44
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A word of caution

o« Modern tools for multiple testing are aimed at controlling
the odds of false negatives (when effects are unduly
discarded as insignificant).

o Basically, they want to be good at detecting both error
types (better overall accuracy)!

o Here, we do not do that, at all. We posit that asset managers
have asymmetric preferences and put much more emphasis
on false positives (investments that disappoint) than on false
negatives (missed opportunities).

e In short, our method aims to single out the strategies

(factors) that perform well across almost all specifications.
32/ 44



Final round: p-h g detection
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https://onlinelibrary.wiley.com/doi/full/10.3982/ECTA18583

Ongoing work




Inspired from Causal inference by using invariant prediction: Identification and confidence intervals.

Let us consider the case of a simple model y = Xb +e in which bis
random. We are given the opportunity to estimate this model from

many pseudo environments, which are couples (y?, XP), so that

estimates depend on these environments 5.

Intuitively, if we span a large number of environments, we
should hope that the empirical cdf of the 6\p converges to that
of b. The challenge is to devise a theoretical framework in
which this can occur — not so simple!
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https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12167

On way to do so is to assume that 5° are random variables which have
the same distribution as b (strong assumption). Randomness comes

from samples, not errors (at least not directly).

The major issue is then: how can we characterize and handle the
correlation between the outcomes from the paths. Indeed, a large
majority of paths are relatively close, so that their outcomes should be

non-negligibly correlated.
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Interesting directions

The Empirical Distribution of a Large Number of Correlated Normal Variables,

Azriel & Schwartzman, JASA 2015

Z, are N(O, ])gaussian variables, 2.p the covariance matrix of
(Z1, ... ,Zp) and I'-Ap(z) the empirical cdf. If

1 11%1l,, = Othen SUPEL\,(2) — ®)2] — O

2. Otherwise, E[(Ft\p (z) — (D(Z))Z] does not converge to zero
for any z.

AlsO: Concentration inequalities for empirical processes of linear time series,

Chen & Wu, JMLR 2018 — importance of memory & tails in MA processes. 34/ 44


https://www.tandfonline.com/doi/abs/10.1080/01621459.2014.958156?journalCode=uasa20
https://www.jmlr.org/papers/v18/17-012.html

Correlation via proximity

o The critical object is the correlation matrix of the outputs
from the paths. What can assume about it?

e Are its elements all positive...?

o Heuristically, it would make sense that the correlation

between two paths increases with the proximity between
these paths. How can we define proximity?
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lllustration: back to paths
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Some notations

e Mappings (layers of decision) f; have rj deterministic
options which the researcher must choose from, and which
we write fj,,-, forr = ],... rj, wherer; = 2. Recall:

P = ﬂjJ:] ri. Hence a path is just the collection of choices
p .= (fj,rp,j)1 <j<J. Simpler notation: fj,r(p).

e For each layer, there is a distance function that measures the
proximity between 2 options: Dj(f; +(p), i.r(q))-

e \We aggregate them across layers to obtain the distance
J
between 2 paths: D(p, q) = £ i=1Y Dj (fj,r(p)yfj,r(q))-

40/ 44



A simplification

Henceforth, we set D(p, q) = #{I, fi ) # fi.1@}, i.€., the number of
choices that differ from p to g. Then for any path p, the number of

other paths which have an arbitrary distance of d (with p) is
Q)
Z]—r(rjs’n_]):ed(r]_],...,rJ_]), d=>1,
n=1s=1

where

ek(x1,...,xJ)= z Xj1 «- - Xji
1<ji<-<jk=d

are elementary symmetric polynomials.
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Two choices

In order to generate an increasing number of paths, we can:

e augment the number of layers J, with finite number of
options rj; or

o let some of the sets of options increase indefinitely (e.g.:
continuous thresholds, subsamples), but for a finite J.

Or let both J and somer; — o0.

This can matter a lot!
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A toy result and extensions

1f p(p, q) = pP®P for some p €(0, 1), then

J— 00
P2 > plp,q) = O.
1<p,g<P

But! The term does not converge to zero when J is fixed and
somer; — 0.

Extensions include:

e Other distances: M-dependent paths
o More general definition of distance between paths

e Procedure to estimate/quantify correlations

431/ 44



The holy grail...?

1. Redefining p-values:
& betapensicom 6 P[b > O|Data].. out of reach for

ull Optus = 9:55 pm © 100% [

@ (@ Help = nOW
revaroene 2. Link with the empirical null
Save View code Share ] diStributiOI‘I
what is a p-value? 0 o False discovery rate control with
A p-value is a statistical measure that is un known Nnu ” d |Str| but|0n Roq ua|n &
used to indicate the probability of a given
hypothesis being true. It is calculated by Ve rzelen (An n. Stat 2022)

dividing the observed results of a test by
the expected results of the test. The lower

the p-value, the more likely the hypothesis O Seml-suDerVISed mUItlple teStInq
Mary & Roquain (EJS 2022)

+
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https://projecteuclid.org/journals/annals-of-statistics/volume-50/issue-2/False-discovery-rate-control-with-unknown-null-distribution--Is/10.1214/21-AOS2141.short
https://projecteuclid.org/journals/annals-of-statistics/volume-50/issue-2/False-discovery-rate-control-with-unknown-null-distribution--Is/10.1214/21-AOS2141.short
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-16/issue-2/Semi-supervised-multiple-testing/10.1214/22-EJS2050.full

Conclusion




Takeaways (& limitations)

o Main message: exhaustive protocols and
reporting of outcomes should become the
baseline results!

e But of course, there is one important limitation:
this is only possible when 1 baseline result takes a
reasonable amount of time & computing power.

e And this is a tough sell because it requires more
efforts from researchers...
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